Основы ТРИЗ. Теория решения изобретательских задач. Издание 3-е, исправленное и дополненное

© Владимир Петров, 2024
ISBN 978-5-0059-9117-1
Создано в интеллектуальной издательской системе Ridero
Основы ТРИЗ. Издание 3, исправленное и дополненное: учебник / В. М. Петров. 2023.
Это переработанное и дополненное издание книги «Петров В. М. Теории решения изобретательских задач – ТРИЗ: Издание 2-е, исправленное и дополненное/ Владимир Петров. [б. м.]: Издательские решения, 2018. – 720 с. – ISBN 978-5-4493-3726-9
Честь текста этой книги публиковалась во 2-м издании.
Книга включает новые разделы и значительно увеличено число примеров и задач из разных областей знаний таких как: бизнес, техника и технология, программирование и информационные системы, биология, жизненные ситуации и т. д.
Приводится обширный список литературы по ТРИЗ.
Данный учебник посвящен системному изложению теории решения изобретательских задач (ТРИЗ). В книге подробно рассмотрены методы постановки нестандартных задач и способы их решения, законы развития систем, методика прогнозирования развития систем, структурный анализ и синтез систем, методы моделирования систем, способы выявления и разрешения противоречий, методика выявления и использования ресурсов.
Теоретический материал иллюстрируется большим количеством примеров, задач и графического материала (более 500 примеров и задач и более 300 иллюстраций). В конце каждой главы представлен материал для самостоятельной работы.
Книга предназначена для бизнесменов, руководителей разных уровней, инженеров, изобретателей, ученых, студентов, преподавателей университетов и людям, решающим творческие (нетривиальные) задачи.
Благодарности
Я премного благодарен Генриху Альтшуллеру, автору теории решения изобретательских задач – ТРИЗ, моему учителю, коллеге и другу, за то, что он создал эту увлекательную теорию. Признателен ему за незабываемое время, проведенное вместе с ним и за то, что он изменил мою жизнь, сделал ее разнообразней и интересней. Некоторые из материалов этой книги обсуждались с Генрихом Альтшуллером.
Список сокращений
АРИЗ – алгоритм решения изобретательских задач;
АП – административное противоречие;
А. с. – авторское свидетельство (документ, утверждающий авторское право на изобретение). Выдавался в СССР;
БД – база данных;
В – вещество;
ВПР – вещественно-полевые ресурсы;
ГФ – главная функция;
ДР – другие решения;
ЗРТС – законы развития технических систем;
И – инструмент;
ИН – измененная надсистема;
ИС – изобретательская ситуация;
ИКР – идеальный конечный результат;
ИР – идея решения (рис. 6.44);
ИР – журнал «Изобретатель и рационализатор»;
ИФ – информационный фонд;
КП – конфликтующая пара;
КР – корректировка решения;
КС – компоненты системы;
М – модель задачи;
МА ТРИЗ – международная Ассоциация ТРИЗ;
МЗ – мини-задача;
МКВ – метод контрольных вопросов;
НИОКР – научно-исследовательская и опытно-конструкторская работа;
НПр – неправильное выполнение шагов;
НЭ – нежелательный эффект;
О – объект (изделие);
ОВ – оперативное время;
ОЗ – оперативная зона;
ОП – оперативный параметр;
ОР – оценка решения (рис. 6.36, 6.65);
ОР – ожидаемый результат (рис. 6.40);
ОУ – операционный усилитель;
ОФ – основная функция;
ОХР – оценка хода решения;
П – поле;
ПА – прямая аналогия;
ПЗ – подзадача;
ПН – применение системы по-новому;
ПП – поверхностное противоречие;
ПС – поверхностное свойства;
ПТ – поверхностное требований;
Пр – правильное выполнение шагов;
ПЭ – положительный эффект;
Р – решение задачи;
Р – реальность (см. Метод золотой рыбки);
РИ – развитие идеи;
РВС – размер – время – стоимость;
РТВ – развитие творческого воображения;
С – свойство системы;
СА – символическая аналогия;
СИ – состояние инструмента;
СК – состояние конфликта;
СМ – структурная модель;
СР – структурное решение;
ТП – техническое противоречие;
ТРИЗ – теория решения изобретательских задач;
ТРТЛ – теория развития творческой личности;
ТРТК – теория развития творческих коллективов;
ТС – техническая система;
УК – усиленный конфликт;
УОФ – уточненная основная функция системы;
УФК – усиленная формулировка конфликта;
Ф – фантазия (см. Метод золотой рыбки);
ФА – фантастическая аналогия;
УИКР – усиление формулировки ИКР-1;
ФН – формальная новизна;
ФП – физическое противоречие;
ФР – физическое решение;
ФСА – функционально-стоимостный анализ;
ХР – ход решения задачи;
Х-эл-т – икс-элемент.
Третье издание этой книги
В 3-м издании книги «Основы ТРИЗ» введен новый раздел 6.2. «Проверка на ложность». Прежде чем решать задачу нужно проверить ее ложная ли она. Не исключено, что это лажная задача и ее нет смысла решать.
Эта проверка включает:
– проверку цели на ложность;
– проверку требований на ложность;
– проверку проблемы на ложность.
Кроме того, дается алгоритм этих проверок.
Книга значительно расширена введением дополнительных примеров и задач, в том числе и задач для самостоятельного решения. Приведены примеры и задачи из разных областей знаний, такие как: техники и технология, программирование и информационные системы, бизнес, биология, жизненные ситуации и т. д.
Приводится обширный список литературы по ТРИЗ.
Все это поможет вам глубже разобраться в описанных подходах и инструментах ТРИЗ и получить знания, умения и отдельны навыки в решении изобретательских задач и изобретательском мышлении.
Рецензии
Олег Фейгельсон
Уважаемые читатели,
Для меня большая честь и большое удовольствие внести свой вклад в книгу «Основы ТРИЗ», написанную моим учителем и другом Владимиром Петровым.
ТРИЗ, русская аббревиатура, которая переводится на английский как Теория решения изобретательских задач, была разработана в середине прошлого века советским изобретателем и писателем-фантастом Генрихом Альтшуллером (1926—1998) и его коллегами. В настоящее время ТРИЗ практикуется по всему миру и является неотъемлемой частью инновационной культуры ряда корпораций мирового уровня, включая Samsung, General Electric, LG, Siemens, Intel, Huawei и многих других.
Владимир Петров – бывший ученик и сотрудник основателя ТРИЗ Генриха Альтшуллера, который присвоил Владимиру звание Мастера ТРИЗ. На мой взгляд, Владимир Петров – один из самых опытных, знающих и продуктивных практиков и разработчиков ТРИЗ в мире. Многие темы и инструменты ТРИЗ, в том числе «Тенденции развития технических систем» и «Алгоритм решения изобретательских задач», были значительно расширены благодаря его разработкам.
Будучи многолетним активным членом общества ТРИЗ, я могу отчетливо наблюдать изобилие инструментов и методов, которые недавно были «изобретены заново» исследователями и практиками, не знакомыми с классической ТРИЗ, разработанной в Советском Союзе в двадцатое столетие. Вероятно, это связано с тем, что многие классические рукописи, написанные пионерами ТРИЗ, доступны исключительно на русском языке. Несмотря на то, что некоторые недавние статьи содержат ссылки на ранние русские публикации, эти публикации никогда не переводились на другие языки.
В «Полной книге классической ТРИЗ» Владимир Петров отобрал и описал классические инструменты ТРИЗ, предоставив уникальную возможность прочитать об этих инструментах на английском языке. Вы не только сможете изучить эти классические инструменты ТРИЗ, но также изучите логику и мыслительный процесс, лежащие в основе этих инструментов.
Среди различных теорий, техник и методов повышения креативности людей и повышения эффективности процесса решения проблем ТРИЗ выделяется своим системным подходом. В Глобальном технологическом центре Samsung Electronics работает несколько штатных экспертов по ТРИЗ, которые применяют эту теорию в очень сложных проектах внутри компании. Мы используем аналитические инструменты ТРИЗ, описанные в книге, для выяснения проблем, остро требующих решения. Затем мы применяем инструменты решения проблем, также описанные в книге, чтобы генерировать инновационные идеи и разрабатывать возможные решения для наших клиентов. Во всей структуре Samsung Electronics более 40 000 инженеров, имеющих опыт работы с ТРИЗ посредством обучающих семинаров и разработки проектов. Говоря это, я хочу еще раз подчеркнуть ценность чтения «Полной книги классической ТРИЗ». С ним вы изучите инструменты ТРИЗ, которые уже доказали свою эффективность в широком спектре проектов во многих ведущих мировых компаниях.
Для читателей, уже знакомых с ТРИЗ, эта книга представляет собой ценный сборник классических инструментов ТРИЗ, алгоритмов и примеров.
Наконец, я хотел бы выразить благодарность Владимиру Петрову за написание «Полной книги классической ТРИЗ» и надеюсь, что все вы, читатели книги, воспользуетесь тем, что можно найти на ее страницах.
Наслаждайся чтением!
Олег Фейгенсон, к.т.н., Мастер ТРИЗ,
Президент Международной ассоциации ТРИЗ,
Главный инженер Глобального технологического центра Samsung Electronics,
Сувон, Южная Корея.
Ellen Domb
«Основы ТРИЗ» Владимира Петрова – это ресурс и справочник, в котором многие преподаватели ТРИЗ и изучающие ТРИЗ нуждаются в течение многих лет. В дополнение ко всем классическим инженерным дисциплинам Петров представляет примеры применения ТРИЗ в широком диапазоне дисциплин, включая бизнес, правительство и программное обеспечение/системы, которые игнорируются в большинстве других текстов. Петров хорошо известен своей работой по применению ТРИЗ в современной системной инженерии, и его понимание ясно проявляется в разделах, посвященных анализу функций, как в главе 3, посвященной системному мышлению, так и в главе 5, посвященной вепольному анализу.
Каждому читателю нужно будет проложить собственный путь через богатые ресурсы «Основы ТРИЗ». Несколько рекомендаций:
– Для начинающих изучать ТРИЗ советую главы: 7, 2, 4.
– Для начинающих практиков ТРИЗ, советую инструменты в главах: 3, 4, 5, 6.
– Для преподавателей ТРИЗ: Все.
– Историки ТРИЗ и других инновационных методов советую главы: 1, 2, 8, 9.
Задания в конце каждого раздела очень хорошо построены, чтобы помочь читателю научиться применять концепции этого раздела к его/ее собственным обстоятельствам. Я рекомендую упражнения читателю – попробуйте их все, а не только те, которые кажутся знакомыми!
Большое спасибо Владимиру Петрову за «Основы ТРИЗ». Это поможет всему сообществу ТРИЗ углубить свое понимание ТРИЗ и их способность применять ТРИЗ к локальным и глобальным проблемам технического, социального и экологического улучшения.
Эллен Домб, Ph. D.
Основатель журнала ТРИЗ (The TRIZ Journal), США.
Сергей Яклвенко
Теория решения изобретательских задач (ТРИЗ) становится все более и более признанной неотъемлемой частью системного инновационного подхода в рамках корпоративной инженерной культуры. Samsung, General Electric, LG, Hyundai Motor Company, Siemens – лишь некоторые из тех, кто уже много лет внедряет и использует ТРИЗ.
У читателей есть поистине уникальная возможность узнать и испытать ТРИЗ из самого подлинного источника – Мастера ТРИЗ Владимира Петрова, одного из ближайших соратников основателя ТРИЗ Г. А. Альтшуллера.
Книга представляет собой полное руководство по так называемой Классической ТРИЗ – ядру методологии, лежащей в основе фазы решения проблем. Очень подробное и исчерпывающее объяснение инструментов, снабженное убедительными и разнообразными примерами и примерами из практики, делает эту книгу обязательной как для начинающих, так и для опытных пользователей ТРИЗ.
Существует очень мало книг, в которых содержится всеобъемлющий, всеохватывающий подход к ТРИЗ; обычно они сосредотачиваются на некоторых выбранных инструментах и уточняют их. Книга Владимира Петрова отличается от других книг методичным, логичным и просветительским изложением материала, подчеркиванием отношений и взаимосвязей между различными частями ТРИЗ. Это глубокое понимание является результатом многолетнего опыта автора как в практическом применении методики, так и в обширном преподавании.
«Полная книга Классики ТРИЗ» – одна из лучших в серии книг по ТРИЗ Владимира Петрова, посвященных различным инструментам ТРИЗ и применениям методологии. Книга может быть эффективно использована в вузах и учебных заведениях как пособие по инновациям и творчеству.
Сергей Иковенко, д.т.н., к.т.н., мастер ТРИЗ,
Профессор Массачусетского технологического института и Университета Тафтса, США.
Председатель методологического и экспертного Совета Международная ассоциация ТРИЗ (МАТРИЗ).
Семен Литвин
Актуальность
Тема книги В. Петрова представляется весьма актуальной в связи с растущей потребностью в эффективной методологии, обеспечивающей достижение сильных инновационных результатов. До относительно недавнего времени инновации основывались на организационных методах, таких как Six Sigma, Lean, QFD и т. д., и методах психологической мобилизации творчества, таких как мозговой штурм. Однако с 60-х годов прошлого века в Советском Союзе была создана наука об инновациях, получившая название Теория решения изобретательских задач – ТРИЗ. Сегодня эта прикладная наука широко используется в США, Европе, Азии, Латинской Америке, России и во всем мире. Его приняли крупнейшие мировые компании, такие как General Electric, Intel, PepsiCo, Samsung, Siemens и др. Основные подходы и инструменты ТРИЗ, описанные автором книги, дают много сильных инновационных решений.
Задачи и содержание книги
Основной задачей книги является систематизация обширного собрания материалов по ТРИЗ в виде учебника для студентов технических специальностей, а также руководителей, инженеров и ученых, работающих в различных областях. Достижению этой цели посвящены следующие разделы книги: «Направления развития технических систем», «База данных ТРИЗ», «Вещественно-полевой анализ», «Алгоритм решения изобретательских задач» (АРИЗ), «Анализ диверсий», «Методы системного анализа и синтеза».
Техника стоимостного инжиниринга описана отдельно. Этот метод был успешно интегрирован в современную ТРИЗ. Этот метод анализирует как технические, экономические, так и бизнес-аспекты инновационного процесса.
Еще одной целью книги является помощь читателям в повышении их личного творчества, социальной активности и определении их роли в команде. Достижению этой цели посвящены следующие разделы книги: «Средства развития творческого воображения», «Теория развития творческой личности» и «Теория развития творческого коллектива».
Научно-методический подход
Автор глубоко проанализировал различные ТРИЗ-методы системного анализа, новые инженерные решения и прогнозирование развития системы. Автор также использовал статистику многочисленных инновационных проектов, в которых он принимал активное участие. В. Петров обращает особое внимание на инструментальность подходов и рекомендаций, представленных в книге. В книге много примеров (около 300), обучающих задач и иллюстраций (более 350). В конце каждой главы есть задачи для самостоятельной практики.
Все модификации и нововведения в инструментарии ТРИЗ, предложенные В. Петровым, прошли интенсивную практическую проверку в многочисленных проектах, выполненных автором и его коллегами для ведущих мировых компаний.
Описанная автором методика успешно прошла апробацию. С помощью этой методологии были улучшены сотни реальных продуктов и процессов. Читатели книги значительно повысят свою творческую эффективность в различных инновационных проектах по ТРИЗ.
Новинка
Ряд подходов и рекомендаций, представленных в книге, являются достаточно новыми. Необходимо отметить многолетнюю работу автора по систематизации направлений развития технических систем, являющихся теоретической основой ТРИЗ.
В целом книга написана на высоком профессиональном уровне. Здорово, что она будет опубликована и найдет свое место в умах и сердцах читателей.
Семен Литвин, PhD, Мастер ТРИЗ
Генеральный директор/Президент, GEN TRIZ, LLC, Бостон, США
Председатель Аттестационного Совета Мастеров ТРИЗ
Вице-президент по исследованиям и разработкам Международной ассоциации ТРИЗ (МАТРИЗ)
Член Института ТРИЗ им. Альтшуллера.
Член Европейской Ассоциации ТРИЗ (ETRIA).
Павел Ливотов
Способность находить нетривиальные решения, систематически генерировать новые концепции и создавать интеллектуальную собственность быстро становится решающей для достижения конкурентного преимущества и использования интеллектуального потенциала компаний. Теория решения изобретательских задач
(ТРИЗ) является важным фактором, помогающим организациям справляться с этими проблемами. ТРИЗ считается сегодня наиболее всеобъемлющей, систематически организованной методологией изобретательского знания и творческого мышления, известной человечеству. Мастер ТРИЗ Владимир Петров, один из ведущих и наиболее известных разработчиков ТРИЗ, делится в «Основы ТРИЗ» своими глубокими знаниями и всесторонним опытом изобретательской методологии. Профессор Петров, всемирно признанный выдающийся специалист в области области системного анализа, концентрируется в первую очередь на двух основных компонентах ТРИЗ – законах эволюции технических систем и изобретательском алгоритме АРИЗ. Этот подход передает основы для правильного и эффективного использования всех инструментов и методов ТРИЗ.
С более чем 300 примерами и упражнениями автор обучает основным навыкам, необходимым для нетривиального систематического изобретательского мышления. Книга может быть полезна как новичкам в ТРИЗ, так и опытным изобретателям и инженерам-исследователям. «Основы ТРИЗ» прекрасно структурирована, хорошо иллюстрирована и написана ясным, понятным языком, что делает ее также очень рекомендуемой для студентов и преподавателей технических специальностей.
Проф. д.т. н. Павел Ливотов
Разработка новых продуктов и решение изобретательских задач.
Руководитель Лаборатории продуктовых и процессных инноваций
Оффенбургский университет прикладных наук, Факультет машиностроения и технологии. Оффенбург, Германия
Валерий Сушков
Очень рад порекомендовать новую книгу Владимира Петрова, кандидата технических наук, Мастера ТРИЗ: «Основы ТРИЗ». Бесспорная ценность книги в том, что она написана доктором наук Владимиром Петровым, одним из тех, кто присоединился к самым ранним усилиям по развитию ТРИЗ. Он был не только учеником Генриха Альтшуллера, основателя ТРИЗ, но и его ближайшим соратником, активно участвовавшим в разработке ключевых принципов и инструментов ТРИЗ и вовлеченным в развитие и деятельность ТРИЗ по всему миру в наши дни.
ТРИЗ возникла в середине 1950-х годов как попытка создать науку об изобретательстве: заменить случайный, хаотичный и непредсказуемый процесс технического творчества структурированным и основанным на знаниях подходом для поддержки генерации успешных изобретательских идей по запросу. Такие попытки привели к успешным результатам, и сегодня каждый может научиться и использовать ТРИЗ для успешного создания новых изобретательских решений, когда они потребуются.
Сегодня ТРИЗ представляет собой сложную дисциплину, которая затрагивает многие инновационные темы: от поиска патентоспособных решений конкретных проблем проектирования или производства до понимания движущих сил инновационного развития продуктов и рынков и прогнозирования будущих продуктов и технологий. Современная ТРИЗ включает в себя множество инструментов, и те, которые составляют центральную структуру ТРИЗ, созданную под руководством Генриха Альтшуллера, известны как «классические». Несмотря на то, что сегодня доступен богатый выбор литературы по ТРИЗ, книги, которые представляют полный обзор классических концепций и инструментов ТРИЗ и делают это в простой для понимания форме, по-прежнему пользуются большим спросом.
Книга начинается с описания того, как были сделаны технические изобретения до ТРИЗ, объясняет основные принципы развития ТРИЗ и постепенно продвигает читателя от понимания ключевых концепций ТРИЗ к изучению ее классических инструментов.
Особое внимание в книге уделено ТРИЗ-тенденциям развития систем и возможностям их использования на практике, которые остаются одним из направлений исследований автора.
Еще одним преимуществом книги является то, что многие классические концепции ТРИЗ проясняются с точки зрения современных тенденций. Книга богато иллюстрирована более чем 300 примерами, объясняющими принципы и представленные решения.
Я хотел бы порекомендовать эту книгу как новичкам в ТРИЗ, так и продвинутым практикам ТРИЗ, которые хотят углубить и расширить свои знания о ТРИЗ и ее происхождении.
Валерий Сушков, Мастер ТРИЗ
Партнер-основатель ICG Training & Consulting
Энсхеде, Нидерланды
Валерий Прушинский
Автор «Полной книги классической ТРИЗ» Владимир Петров занимается ТРИЗ (теорией решения изобретательских задач) с 1972 года. Он был в числе первых инструкторов по ТРИЗ, организовавших учебные курсы в Санкт-Петербургском общественном университете ТРИЗ. Хотя г-н Петров успешно реализовал несколько сотен проектов, применяя ТРИЗ в различных областях технологий для многонациональных корпораций, его текущие исследования сосредоточены на обучении ТРИЗ. С 2014 года он
является профессором Плехановского экономического университета в Москве, Россия.
Г-н Петров является автором нескольких книг по освоению ТРИЗ от начального до продвинутого уровней и, наконец, интегрировал свои методы обучения в «Полную книгу классической ТРИЗ». Книга дает учащимся как общую картину современной теории ТРИЗ, так и множество упражнений и вопросов, способствующих глубокому пониманию теории и практики путем управляемого повторения, основанного на сотнях вопросов.
Книга полезна как для преподавателей ТРИЗ, так и для студентов. Это помогает студентам понять теорию решения изобретательских задач и думать как ведущие новаторы, внедряя систематическое инновационное мышление и несколько инструментов ТРИЗ. В этой книге автор тщательно объясняет аспекты классической ТРИЗ, разработанные основателем ТРИЗ Генрихом Альтшуллером, и его личные современные взгляды, разработанные на основе его многолетнего опыта применения ТРИЗ для инноваций в основных технологических областях (г-н Петров руководил и добился более 400 проектов по решению изобретательских задач с использованием различных инструментов ТРИЗ). Преподаватели и эксперты в области ТРИЗ оценят основные моменты ключевых концепций ТРИЗ, обзорные вопросы и поставленные задачи. Книга основана на нескольких редакциях учебника по теории решения изобретательских задач в рамках курса «Алгоритмы решения нестандартных инновационных задач». Эта редакция существенно улучшила исходный учебник для лучшего преподавания и учебного процесса.
Валерий Прушинский, Мастер ТРИЗ, США
Марат Гафитулин
С большим удовольствием выскажу свое отношение к учебнику «Основы ТРИЗ», автором которого является Владимир Петров.
Содержание учебника организовано так, что позволяет системно охватить основные направления и инструменты ТРИЗ. Автор в простой и доступной форме стремится раскрыть сложные темы. Большое количество примеров, приведенных в книге, однозначно расширяют кругозор читателя. Примеры, схемы, таблицы наглядно демонстрируют как теоретические, так и практические возможности ТРИЗ.
Особо отмечу учебную составляющую книги. После ознакомления с содержанием каждой главы читателю предоставляется возможность сделать самостоятельную работу. Автор учебника предлагает ответить на контрольные вопросы, выбрать тему доклада и реферата, выполнить конкретные задания. Самостоятельная работа читателя позволяет глубже понять теоретический материал, проверить работоспособность инструментов, получить личный опыт применения ТРИЗ.
Надеюсь, учебник «Основы ТРИЗ» Владимира Петрова, станет настольной книгой для активных и целеустремленных людей, стремящихся к саморазвитию.
Марат Гафитулин, Мастер ТРИЗ, к.п.н.
Юрий Федосов
Теория решения изобретательских задач (ТРИЗ) является наиболее эффективным универсальным инструментом, который современные инженеры могут использовать для разработки решений по устранению недостатков и совершенствованию технических систем (ТС). Со времени первой публикации ТРИЗ прошло более полувека, и время доказало ее жизнеспособность и практическую применимость. Достаточно большое сообщество инженеров-практиков, теоретиков и тренеров сделало ТРИЗ широко доступной для понимания и использования во всем мире.
Книга Мастера ТРИЗ В. Петрова «Основы ТРИЗ» – очередной и очень своевременный шаг для распространения знаний о ТРИЗ в мире и ее практического применения. Несмотря на то, что в ней представлено личное авторское понимание классической ТРИЗ и большое количество собственных взглядов, книга в полной мере познакомит читателя с основами ТРИЗ. Следует отметить, что специалисты в конкретных областях инженерных систем могут оспорить некоторые примеры, приведенные автором.
Но следует понимать, что это лишь иллюстрации методических подходов к решению задач. Они были выбраны по принципу простоты понимания широким кругом читателей. Только настоящие авторы использованных примеров могут отвечать на претензии об их корректности.
Надеемся, что книга В. Петрова «Полная книга классической ТРИЗ» займет достойное место в библиотеке людей, стремящихся повысить свой творческий потенциал в работе с инженерными и, возможно, с другими сложными системами. Он сможет восполнить недостаток полноценных публикаций по ТРИЗ.
Юрий Федосов, к.т.н., Мастер ТРИЗ.
Экс-президент Международной ассоциации ТРИЗ
Андрей Ефимов
«Основы ТРИЗ» не только о ТРИЗ. Это также о другом способе мышления! Более структурированный, более систематический, более логичный.
Это поможет вам решить не только инженерные и изобретательские задачи, но и любые проблемы, с которыми вы постоянно сталкиваетесь в своей повседневной жизни! Чтобы решить их наиболее эффективным способом.
Материал в книге очень хорошо структурирован. Он шаг за шагом проведет вас через захватывающий мир творческого мышления. Множество интересных практических примеров иллюстрируют материал и помогают лучше понять его и улучшить навыки решения задач.
Книга будет полезна как новичкам, так и продвинутым специалистам.
Андрей Ефимов, к. т. н, мастер ТРИЗ,
Москва, Россия
Лев Певзнер
Владимир Петров – ученик и соратник основателя ТРИЗ,
Г. С. Альтшуллер; который посвятил более 50 лет своей жизни
развитие и популяризация ТРИЗ. Г. С. Альтшуллер дирижировал
периодические семинары по обучению ТРИЗ. Впервые я прошел обучение по ТРИЗ еще в 1982 году.
В этой книге Петров излагает основы классической ТРИЗ, основные концепции и ее инструменты. Приведенные примеры иллюстрируют представленный материал, делая его понятным для широкого круга читателей, включая инженеров, студентов и даже старшеклассников.
Книга рекомендуется для самостоятельного изучения ТРИЗ.
Лев Певзнер, к.т.н., Мастер ТРИЗ
Введение
Теория решения изобретательских задач – это новая технология творчества, при которой процесс мышления не хаотичен, а организован и четко управляем.
Г. С. Альтшуллер
Перед Вами, дорогой читатель, учебник «Теория решения изобретательских задач (ТРИЗ)».
Данный учебник ставит задачу дать знания и умения в постановке и решении нестандартных задач, прогнозировании развития систем и развитии творческого мышления.
Книга содержит введение, 8 глав, заключение и приложения.
Введение. Описывает предназначение и структуру книги, а также рекомендации по эффективному ее использованию.
Глава 1 посвящена традиционной технологии решения задач. Прежде всего, показывается место изобретательства в инженерной деятельности. Рассматриваются достоинства и недостатки этой технологии, а также присущие ей метод проб и ошибок, психологическая инерция и отсутствие изобретательского подхода. Показаны виды психологической инерции и способы ее преодоления, необходимость изобретательского мышления (ТРИЗного мышления).
Глава 2 описывает общие представления о ТРИЗ. Это обзор ТРИЗ с высоты птичьего полета. В этой главе излагаются постулаты ТРИЗ, уровни изобретений, структура и функции ТРИЗ, составляющие изобретательского мышления и способы их развития, алгоритм применения инструментов ТРИЗ и развитие ТРИЗ в мире.
Глава 3 посвящена системному подходу. В ней даются основные понятия системного подхода, определение системы, технической системы, иерархии, функции и потребности. Описаны основные принципы системного подхода, его инструменты, функциональный подход, комплексно-структурный подход, последовательность разработки новых систем. Приводятся примеры разработки новых систем. Разбирается один из простейших инструментов системного подхода – системный оператор.
В главе 4 излагаются системы законов Г. С. Альтшуллера и автора книги. Детально рассматривается каждый из законов, закономерностей и линий развития ТС. Описана методика прогнозирования развития ТС, разработанная автором книги, приводится пример прогноза развития конкретной ТС.
Глава 5 посвящена структурному анализу и синтезу систем, который Г. С. Альтшуллер назвал вепольным анализом.
Глава 6 описывает алгоритм решения изобретательских задач (АРИЗ). Даются определения всех видов противоречий, идеального конечного результата (ИКР), основная линия решения задач по АРИЗ. Особое внимание уделяется логике АРИЗ. Это материалы, предшествующие рассмотрению практического АРИЗ и АРИЗ-85В. Детально рассматривается практический АРИЗ, разработанный автором книги.
Глава 7 посвящена информационному фонду ТРИЗ, в который входят приемы разрешения противоречий, различные виды эффектов (физические, химические, биологические и геометрические), стандарты на решение изобретательских задач и ресурсы. В главе детально описываются каждый из этих инструментов, а также методика их использования.
В главе 8 излагаются методы развития личности и коллектива. К ним относятся методы развития изобретательского мышления, теория развития творческой личности (ТРТЛ) и теория развития творческих коллективов (ТРТК). Дается обзор методов развития творческого воображения (РТВ) и подробно описываются оператор размер-время-стоимость (РВС) и метод моделирования маленькими человечками (ММЧ). Кратко излагаются ТРТЛ и ТРТК.
В заключении приводятся рекомендации по эффективному использованию инструментов ТРИЗ, по совершенствованию знаний, умений и отработке навыков применения ТРИЗ, а также развитию изобретательского мышления.
Приложение 1 содержит текст практического АРИЗ.
Приложение 2 посвящено разбору задач.
Приложение 3 дает ссылки на основные сайты ТРИЗ.
Книга является вводной. Она знакомит читателя с основными понятиями и инструментами ТРИЗ. Информации, содержащейся в книге, достаточно для получения общих знаний о ТРИЗ и ее практического использования.
Книга написана в последовательности, в которой рекомендуется осваивать ТРИЗ.
Каждая глава начинается с описания ее структуры и предназначения. Элементы этой структуры рассматриваются в параграфах и подпараграфах.
Теоретический материал иллюстрируется большим количеством примеров, задач и графического материала (около 500 примеров и задач и около 400 иллюстраций). В конце каждой главы дается материал для самостоятельной работы.
Книга предназначена для бизнесменов, руководителей разного ранга, инженеров, изобретателе, студентов и аспирантов. Она также может быть полезна преподавателям университетов, ученым и людям, решающим творческие задачи.
Желаю успехов, ДОРОГОЙ ЧИТАТЕЛЬ, в освоении столь необходимой и увлекательной науки, называемой ТРИЗ.
В заключение этого параграфа хотелось процитировать мысль великого английского философа, родоначальника английского материализма, основоположника эмпиризма, лорд-канцлера при короле Якове I, барона Веруламского и виконта Сент-Олбанского Фрэнсиса Бэкона (Francis Bacon) [22 января 1561 – 9 апреля 1626].
Читай не затем, чтобы противоречить и опровергать, не затем, чтобы принимать на веру; и не затем, чтобы найти предмет для беседы; но, чтобы мыслить и рассуждать.
Фрэнсис Бэкон
Глава 1. ТРАДИЦИОННАЯ ТЕХНОЛОГИЯ РЕШЕНИЯ ЗАДАЧ
Принцип Компетентности по Питеру: чтобы избегать ошибок, надо набираться опыта; чтобы набираться опыта, надо делать ошибки.
Содержание главы 1:
1.1. Введение
1.2. Метод проб и ошибок
1.3. Психологическая инерция
1.4. Отсутствие системного мышления
1.1. Введение
Потребность в изобретательстве была у человечества всегда.
Истоки изобретательства уходят своими корнями в глубокую древность. Для добычи пищи и защиты наши далекие предки первоначально пользовались объектами, «изготовленными» природой: камни, палки и т. д. Поэтому первые «изобретения» были ориентированы на применение известных в природе «устройств», веществ и способов. Процесс изобретательства в те далекие времена заключался в наблюдении и удаче (случайности) нашего предка. Кто-то обратил внимание, что острым камнем или рогом можно обрабатывать землю или шкуру животных, можно использовать огонь после лесных пожаров и т. д.
Так, судоходство, скорее всего, началось с момента, когда человек заметил, что бревно, находящееся в воде, может поддерживать его на плаву, а судостроение берет начало с изобретения первого плота. Еще в древности человек использовал водные пути рек и морское пространство для передвижения. Особенно интенсивно морское дело развивалось в рабовладельческом обществе.
Изобретение колеса в корне изменило способы передвижения по суше.
Изобретения характерны для многих областей деятельности: бизнес, строительство, архитектура, литература, искусство, сельское хозяйство, спорт и т. д. В каждом из этих видов имеются свои нововведения. Так история нововведений в изобразительном искусстве связана с изобретением перспективы, новых видов красок, новых направлений и т. д.
Безусловно, особую роль изобретательство играет в инженерной деятельности.
Инженер происходит от французского «ingénieur» и латинского слова «ingenium» – изобретательность, а также врожденная способность, дарование, ум.
Изобретательские способности необходимы инженеру не только при разработке принципиально новых решений, которые, как правило, оформляются в виде патентов, но и на этапах проектирования, создания опытных образцов, разработки серийных и массовых изделий, эксплуатации и утилизации оборудования. На всех этапах возникают задачи, которые для решения требуют изобретательства.
В связи с этим актуальным становится знание методов изобретательства и умение их использования в различных ситуациях.
1.2. Метод «проб и ошибок»
Выясним, зачем нужна «технология решения задач»?
Вы можете справедливо сказать, что все мы каждый день, решая задачи без всякой технологии, справляемся с ними. Зачем нам какая-то «технология решения задач»?
Действительно, когда специалист решает известный ему тип задачи из области его знаний, то он это делает быстро и на профессиональном уровне. Этот рутинный процесс показан на рис. 1.1.
Рис. 1.1. Процесс решения известного типа задачи
Другое дело, если перед специалистом стоит задача нового типа – ничего подобного он ни разу в жизни не решал. Он пытается ее решать, но «упирается в стенку», появляется непреодолимый барьер (рис. 1.2). Специалист не может получить решение потому, что ему не хватает знаний и опыта.
Рис. 1.2. Процесс решения неизвестного типа задачи
Давайте разберемся, как в этом случае обычно решают задачи?
Решение любых задач, а тем более, творческих, изобретательских, в нашем представлении связано с перебором большого количества вариантов (рис. 1.3).
Рис. 1.3. Метод «проб и ошибок»
Попробовали решать задачу, двигаясь в одном направлении, – не вышло, попробовали чуть изменить направление, тоже не вышло. Вернулись в исходную точку и выбрали другое направление. Снова попытались решать задачу, и снова потерпели неудачу. И вот на какой-то пробе получили первое решение. Как правило, это решение достаточно низкого уровня. Оно чаще всего лежит на поверхности.
Обычно используют именно это решение. Реже процесс решения продолжается, и снова совершаются очередные пробы и очередные ошибки.
В науке такой процесс решения задач перебором вариантов называют метод «проб и ошибок».
На решение задач методом «проб и ошибок» уходит слишком много времени и полученные результаты не всегда являются наилучшими.
Условно все решения задач можно разделить на 5 уровней. Первый уровень – самый низкий, а пятый – самый высокий.
Чем выше уровень решения, тем больше проб нужно сделать. Так для решения 1-го уровня необходимо совершить не более 10 проб, а для получения решения 5-го уровня не менее 1 миллиона проб. Подробно уровни решений описаны в параграфе 2.2.
Как правило, используя метод «проб и ошибок» получают решения1-го, реже 2-го уровня.
Попробуем разобраться почему, используя метод «проб и ошибок», получают слабые решения. Решая задачи, специалист, прежде всего, опирается на свои знания и опыт. Это хорошо, когда он решает известные ему типы задач. При решении принципиально новых задач, такой опыт подсказывает уже известные пути, которые в данном случае не помогают, а тормозят процесс. Эти решения, как правило, уже были опробованы, иначе задача была бы решена. Такой опыт оказывает «медвежью услугу». Память подсказывает уже известные решения, навязанные психологической инерцией. Это понятие также называют «инерция мышления» или «психологический барьер» Поэтому вектор психологической инерции всегда направлен в сторону решений низкого уровня (слабых решений) – решений 1-го, реже 2-го уровней.
Решая задачи методом «проб и ошибок», мы тратим много времени и далеко не всегда получаем лучшие результаты, а полученные решения, как правило, являются дорогими.
1.3. Психологическая инерция
Приступая к решению новой задачи, мы невольно пытаемся применить уже известные нам решения, методики или понятия. Эта «услужливая» память подсказывает пути, ранее используемые нами, то есть заставляет идти по «проторенной дорожке». Вот это-то явление и получило название психологическая инерция.
Таким образом, психологическая инерция – явление, при котором непроизвольно используют известные решения, методы, действия и т. д., опирающиеся на предыдущий опыт. Это хорошо, когда решаются известные, для специалиста, типы задач – это рутинный процесс. При этом не нужно тратить время на то, что известно. Однако, если решаются задачи новых типов, то психологическая инерция является помехой.
И так, психологическая инерция полезна, когда мы совершаем рутинные процессы и вредна в творческих процессах.
Проведем небольшой тест. Необходимо быстро отвечать на вопросы.
Задача 1.1. Тест
– Чему равна единица в квадрате?
– Чему равно два в квадрате?
– Чему равно три в квадрате?
– Чему равно четыре в квадрате?
– Чему равен угол в квадрате?
Обычно ответ на последний вопрос затягивается. Безусловно, угол в квадрате равен 90 градусов.
Сколько секунд ушло на поиск ответа? Если потрачено 2—3 секунды, то тестируемый умеет быстро переключаться и у него незначительная психологическая инерция, но если больше, то, человек привык идти по проторенной дороге…
Для устранения психологической инерции имеются специальные методы.
Опишем некоторые из причин появления психологической инерции:
– употребление специальных терминов;
– параметрические представления, например, пространственно-временные представления об объекте;
– система ценностей;
– употребление привычного принципа действия;
– употребление привычной формы;
– традиции (профессиональные, корпоративные, национальные, территориальные, религиозные и т. п.).
1.3.1. Употребление специальных терминов
Одна из причин появления психологической инерции – употребление привычных терминов, приводимых в условиях задачи. Мы мыслим понятиями, и термины незаметно «толкают» нас в направлении уже известных решений.
Пример 1.1. Ледокол
Рассматривая, например, задачу с передвижением ледокола во льдах, мы уже невольно представляем определенную «технологию» передвижения во льдах. «Ледокол» – значит, лед необходимо колоть. Хотя может быть его лучше резать, пилить, взрывать или двигаться подо льдом, надо льдом или сквозь лед?
Преодоление этого вида психологической инерции может осуществляться путем перехода к более общим терминам или функциям, которые выполняют эти объекты. Таким образом, нужно определить в какую систему входит данный объект, определить функцию, которую выполняет данный объект. Этого уже может быть достаточно, чтобы избавиться от психологической инерции. Может быть, придется определить надсистему, в которую входит данная система и определить ее функцию. Эту операцию можно продолжить – выйти в наднадсистему и т. д. Избавление от специальных терминов описывается в АРИЗ (п. 6.11.2).
Пример 1.1. Ледокол (продолжение)
Разберем термин ледокол. Его функция колоть лед. Более общая функция – ломать лед, разрушать лед. Можно выявить все способы разрушения льда. Мы уже упоминали выше: резать, пилить, взрывать. Можно добавить еще, например, плавить, растворять и т. д.
Теперь давайте выясним, зачем нам нужно разрушать лед? Для того, чтобы была возможность проходить судам сквозь лед. Значить необходимо определить другие способы прохода сквозь лед. Как мы отмечали раньше можно двигаться подо льдом, по льду, надо льдом или сквозь лед. Судну необходимо проходить сквозь лед, чтобы преодолеть определенное пространство. Значит, нужно выявить все возможные способы перемещения определенного груза из одного пункта в другой.
Таким образом, мы увидели много других способов преодоления пространства, и психологическая инерция термина не довлеет над нами.
Пример 1.2. Мясорубка
Рассмотрим другой термин мясорубка. Значит, мясо нужно только рубить, а почему его не рвать или не разделять какими-то другими способами. Таким образом, можно говорить о «мясорвалке», «мясовзрывалке», а в общем случае «мясоразделялке». Известно, что если не нарушать структуры волокон мяса, то пища получается более вкусная и полезная.
1.3.2. Параметрические представления
Психологическая инерция появляется с употреблением привычных для данной системы параметров.
Пример 1.3. Сверхзвуковой самолет
В момент перехода самолетом звукового барьера (скорость самолета превышает скорость звука) на передней кромке образуется ударная волна.
На фронте ударной волны скачкообразно происходят кардинальные изменения свойств потока – давление и температура газа скачком возрастают. Все эти изменения тем больше, чем выше скорость сверхзвукового потока. При гиперзвуковых скоростях (число Маха = 5 и выше) температура газа достигает нескольких тысяч градусов. Так, например, шаттл «Колумбия» разрушился 1 февраля 2003 года из-за повреждения термозащитной оболочки, возникшего в ходе полета).
Пример 1.4. Фазовые изменения
Изменяя температуру и давление, вода может превратиться в пар или лед.
Подобные изменения могут проводиться с любыми параметрами системы, при этом желательно выбирать наиболее существенные.
Для преодоления этого вида психологической инерции параметры повышают от заданных до бесконечности и уменьшают до нуля, а в некоторых случаях – до минус бесконечности.
С изменением условий до максимума или минимума зачастую происходят скачкообразные изменения свойств. Подробнее об этом будет описано в п. 8.1.3.
Психологическая инерция появляется с употреблением привычных пространственно-временных представлений, которые связываются с тем или иным объектом или процессом. Размеры объекта и продолжительность его действия либо прямо указаны в условиях задачи, либо подразумеваются сами собой.
Одним из способов преодоления этого вида психологической инерции, связанной с пространственно-временными и стоимостными представлениями, – использование оператора РВС (размер-время-стоимость), который рассматривается ниже (п. 8.1.3).
В общем случае этот вид психологической инерции связан с привычными значениями параметров системы. Для преодоления этого вида психологической инерции используют параметрический оператор – максимальное увеличение и уменьшение параметра и поиск новых решений. Примеры приведены в п. 8.1.3.
1.3.3. Традиция
Большое влияние на стиль нашей жизни, на моду, на способы приготовления пищи, на вид и содержание окружающих нас предметов, на стиль работы и мышления оказывает традиция (профессиональная, корпоративная, национальная, территориальная, религиозная и т. д.).
Покажем некоторые особенности национальной традиции.
Пример 1.5. Двигатель автомобиля
На одной из выставок демонстрировались двигатели для автомобилей, произведенные компаниями из различных стран.
Французы сделали двигатель с красивым внешним видом, на который было очень приятно смотреть. Чтобы разобрать этот двигатель, нужно было использовать, семь различных инструментов.
Корпус немецкого двигателя был тщательно обработан даже с внутренней стороны, где не требовалась обработка. Чтобы его разобрать, нужно было использовать три инструмента.
Американский двигатель был внешне не красив, внутренние стороны корпуса были обработаны только в необходимых местах. Для его разборки требовался только один инструмент.
Пример 1.6. Цветы в Альпах
В Швейцарских Альпах путника призывают не рвать цветы.
Призывы эти сделаны с учетом национальной психологии.
Надпись, сделанная по-французски, гласит: «Наслаждайтесь цветами, но не обрывайте их!».
На английском языке она звучит как вежливая просьба: «Пожалуйста, не рвите цветы!».
Немецкое запрещение категорично – «Цветы не рвать!».
Этот вид психологической инерции можно преодолеть, если рассмотреть, как можно большее количество «решений», предлагаемых другими специальностями, компаниями, странами, национальностями и религиями и т. д. При этом необходимо использовать самые лучшие решения.
1.3.4. Система ценностей
Ценностные представления о вещах и понятиях (система ценностей) накладывают на них свое мировоззрение, которое мешает их увидеть в другом свете.
Пример 1.7. Вода
В странах, где много рек и озер, вода считается даровым ресурсом, а в пустыни каждый глоток воды ценится очень дорого.
Преодоление этого вида психологической инерции требует изменить представление об имеющейся ценности. Представить наиболее ценный объект рассмотрения неценным или наоборот, неценный – ценным и представить для себя следствия этого подхода.
1.3.5. Принцип действия
Пожалуй, с особым упорством психологическая инерция проявляется в сохранении прежнего принципа действия в новых изобретениях. Много таких примеров хранит история техники. Вспомним некоторые из них.
Пример 1.8. Первое паровое судно
Первое паровое судно, построенное в конце XVIII века американским изобретателем Джоном Фитчем (John Fitch), приводилось в движение… веслами. Гребцы были заменены паровым двигателем, в остальном старый принцип действия корабля не изменился (рис. 1.4). А главное, что движитель (весла) были оставлены от старого судна.
Рис. 1.4. Первый пароход
Пример 1.9. Шагающий паровоз
Паровоз, изобретенный Уильямом Бруном (William Brunton), использовал принцип действия лошади. В качестве движителя использовались не колеса, а ноги (рис. 1.5). С помощью их паровоз отталкивался. Брун получил патент №3700, выданный 22 мая 1813 г.
Рис. 1.4. Первый пароход
Пример 1.10. Корабли Наполеона
Американский изобретатель Фултон предложил Наполеону заменить французский парусный флот кораблями с паровым двигателем. Они могли бы пересекать Ла-Манш при любой погоде и осуществлять десантные операции в самые неожиданные для противника моменты.
Корабли без парусов? Эта идея показалась великому полководцу настолько невероятной, он высмеял изобретателя.
По мнению британских историков, Англия была спасена от вторжения во многом потому, что Наполеон не сумел должным образом оценить изобретение Фултона. В данном случае психологическая инерция мышления проявилась в виде полного отрицания новой идеи без особых доказательств1.
Пример 1.11. Пулемет
Известный русский военный мыслитель, передовой человек своего времени генерал Драгомиров так отзывался о новом изобретении – пулемете:
– Если бы одного и того же человека нужно было убивать по нескольку раз, то это было бы чудесное оружие, так как при 600 выстрелах в минуту приходится 10 пуль в секунду.
На беду, поклонников столь быстрого выпускания пуль, человека довольно подстрелить один раз, и расстреливать его затем вдогонку, пока он будет падать, надобности, сколько мне известно, нет.
Так генерал Драгомиров убедительно доказывал ненужность пулемета.
Пример 1.12. Радиоволны
Физик Герц, открывший радиоволны, никак не мог согласиться, что его открытие найдет применение в технике связи.
«И не спорьте, отмахивался Герц, – я сам открыл эти волны. Мне лучше знать».
Через некоторое время А. С. Попов построил первую радиостанцию.
Пример 1.13. Плесень
Микробиологи долго исследовали пути борьбы с бактериями. Провели тысячи опытов, но при этом часто мешала плесень. Где появлялась плесень, микробы сразу гибли, поэтому микробиологи отчаянно боролись с плесенью, тщательно мыли лабораторную посуду.
Через 20 лет английский исследователь Флеминг открыл, что плесень содержит вещество, уничтожающее микробов. Он изобрел пенициллин.
Пример 1.14. Синхронизатор стрельбы
Синхронизатор, позволяющий пулемету стрелять через диск пропеллера самолета, был изобретен задолго до первой мировой войны. Но тогда все военные спецы считали, что стрельба с самолета – это чистая фантастика.
Преодоление этого вида психологической инерции требует функционального подхода. Принцип действия подбирается, так, чтобы максимально эффективно выполнить функцию.
1.3.6. Форма
Сохранение старой формы в новых изобретениях – один из наиболее распространенных видов психологической инерции.
Рассмотрим пример из история техники.
Пример 1.15. Первый автомобиль
Первый автомобиль повторял форму привычной коляски. Паровой двигатель этого автомобиля был расположен впереди в специальном кожухе, выполненном в форме… крупа лошади. Интересно, что и управление этой машиной осталось традиционным. Повороты осуществлялись с помощью привычных… вожжей. Посмотрите на карикатуру того времени (рис. 1.6).